Exercise 9

Find the Laplace transform of the following expressions that include convolution products:

$$
\int_{0}^{x} \sinh (x-t) y(t) d t
$$

Solution

The Laplace transform of a function $f(x)$ is defined as

$$
F(s)=\mathcal{L}\{f(x)\}=\int_{0}^{\infty} e^{-s x} f(x) d x
$$

Take the Laplace transform of the provided expression.

$$
\begin{aligned}
\mathcal{L}\left\{\int_{0}^{x} \sinh (x-t) y(t) d t\right\} & =\int_{0}^{\infty} e^{-s x} \int_{0}^{x} \sinh (x-t) y(t) d t d x \\
& =\int_{0}^{\infty} \int_{0}^{x} e^{-s x} \sinh (x-t) y(t) d t d x
\end{aligned}
$$

The aim is to make a substitution so that sinh and y are both functions of only one variable. Since the inner integral is in $d t$ and t is present in both sinh and y, a substitution won't achieve anything. x is only present in sinh, so if we change the order of integration to make the inner integral in $d x$, then a substitution will lead to progress.

Figure 1: The current mode of integration in the $x t$-plane is shown on the left. This domain will be integrated over as shown on the right to simplify the integral.

$$
\mathcal{L}\left\{\int_{0}^{x} \sinh (x-t) y(t) d t\right\}=\int_{0}^{\infty} \int_{t}^{\infty} e^{-s x} \sinh (x-t) y(t) d x d t
$$

Now make the following substitution.

$$
\begin{aligned}
r & =x-t \quad \rightarrow \quad r+t=x \\
d r & =d x
\end{aligned}
$$

The double integral can then be evaluated.

$$
\begin{aligned}
\mathcal{L}\left\{\int_{0}^{x} \sinh (x-t) y(t) d t\right\} & =\int_{0}^{\infty} \int_{0}^{\infty} e^{-s(r+t)} \sinh (r) y(t) d r d t \\
& =\int_{0}^{\infty} \int_{0}^{\infty} e^{-s r} e^{-s t} \sinh (r) y(t) d r d t \\
& =\left[\int_{0}^{\infty} e^{-s r} \sinh (r) d r\right]\left[\int_{0}^{\infty} e^{-s t} y(t) d t\right]=\mathcal{L}\{\sinh x\} \mathcal{L}\{y(x)\} \\
& =\left[\int_{0}^{\infty} e^{-s r}\left(\frac{e^{r}-e^{-r}}{2}\right) d r\right] Y(s) \\
& =\frac{1}{2}\left[\int_{0}^{\infty} e^{(-s+1) r} d r-\int_{0}^{\infty} e^{-(s+1) r} d r\right] Y(s) \\
& =\frac{1}{2}\left[\left.\frac{1}{-s+1} e^{(-s+1) r}\right|_{0} ^{\infty}-\left.\frac{1}{-(s+1)} e^{-(s+1) r}\right|_{0} ^{\infty}\right] Y(s) \\
& =\frac{1}{2}\left(\frac{1}{s-1}-\frac{1}{s+1}\right) Y(s) \\
& =\frac{1}{2} \cdot \frac{s+1-s+1}{(s-1)(s+1)} Y(s) \\
& =\frac{1}{2} \cdot \frac{2}{s^{2}-1} Y(s)
\end{aligned}
$$

Therefore,

$$
\mathcal{L}\left\{\int_{0}^{x} \sinh (x-t) y(t) d t\right\}=\frac{Y(s)}{s^{2}-1} .
$$

